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ON THE RATE OF CONVERGENCE 
OF THE NONLINEAR GALERKIN METHODS 

CHRISTOPHE DEVULDER, MARTINE MARION, AND EDRISS S. TITI 

ABSTRACT. In this paper we provide estimates to the rate of convergence of 
the nonlinear Galerkin approximation method. In particular, and by means of 
an illustrative example, we show that the nonlinear Galerkin method converges 
faster than the usual Galerkin method. 

1. INTRODUCTION 

The nonlinear Galerkin methods originate from recent developments in the 
study of the long-time behavior of dissipative partial differential equations. It 
is well known that this behavior depends in an essential manner on certain 
nondimensional bifurcation parameters, such as the Reynolds or the Grashoff 
numbers for the Navier-Stokes equations (NSE). For small values of these pa- 
rameters, the solution converges as t -* +oo towards rest or towards a stationary 
solution u, . However, for large values of these parameters, the dynamics of the 
system, in general, becomes nontrivial. In particular, even if the driving forces 
are time-independent, the system may display a time-dependent behavior. The 
solutions converge to a set, the global (universal) attractor, which is compact 
and invariant under the flow of solutions. This set is the mathematical object 
describing the permanent turbulent or chaotic regime. An important question, 
from both dynamical and numerical points of view, is then how to approximate 
the global attractor. As a partial answer the concepts of inertial manifolds (IM) 
and approximate inertial manifold (AIM) have been introduced. Let us write 
the partial differential equation as an abstract differential equation operating in 
some Hilbert space H: 

du 
(1.1) d--t + vAu + R(u) = 0. 

We consider a basis of H consisting of eigenvectors of the basic linear dissi- 
pative operator A. We denote by Pm the orthogonal projection of H onto 
the space spanned by the first m eigenvectors of the operator A. Also, we set 
QM = I - Pm . By applying Pm and Qm to (1.1), one obtains the equivalent 
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system 

dP + vAp + PmR(p + q) =0, 
dq 
dq + vAq + QmR(p + q) =0. 

An inertial manifold (see Foias, Sell, and Temam [17]) is a finite-dimensional 
manifold, X#, which is positively invariant under the flow and attracts all the 
solutions at an exponential rate. It is sought as the graph of a suitable function 
1: PmH * QmH. If such a manifold exists, it contains the global attractor, 
and the dynamics on X is completely described by the system of ordinary 
differential equations 

dp 
.E+ vAp + PmR(p + ??(p)) = 0, 

which is called the associated inertial form (see Constantin, Foias, Nicolaenko, 
and Temam [6], Foias, Nicolaenko, Sell, and Temam [15], Foias, Sell, and 
Temam [17], Foias, Sell, and Titi [18], Mallet-Paret and Sell [38], and the 
references therein). 

Unfortunately, the existence of IM is not known for many dissipative partial 
differential equations, including the 2-D Navier-Stokes equations. However, 
note that in the latter case, the existence of an inertial form has been derived 
recently in the 2-D case with periodic boundary condition, see Kwak [35]. Also, 
except in very special cases (Bloch and Titi [1]), in general, one will not be 
able to find the explicit form of the inertial manifolds, even if they exist. A 
substitute, and perhaps computationally more convenient, concept is that of 
approximate inertial manifold (Foias, Manley, and Temam [13, 14], Foias, Sell, 
and Titi [18]). An AIM of order e > 0 is a finite-dimensional manifold X# such 
that the solutions enter in finite time an e-neighborhood of X#. In particular, 
this neighborhood contains the global attractor. Therefore, XF provides an 
approximation of order e of the global attractor. The AIM are obtained as 
graphs of functions 4Dapp: PmH * QmH; the associated approximate inertial 
form is then the ODE 

(1.2) dp + vAp + PmR(P + (Dapp(P)) = 0 

The simplest AIM turns out to be the linear space PmrH for which Dapp (P) 0. 
Nonlinear AIM providing a better-order approximation than PmH have been 
considered by several authors: Foias et al. [13, 12, 14, 18], Marion [39, 40], Titi 
[55, 56], Jolly, Kevrekidis, and Titi [32, 33], Temam [50], and Debussche and 
Marion [7]. In particular, in the last two references, a method for constructing 
sequences Aj of AIM providing better and better orders of approximation is 
presented. 

The nonlinear Galerkin methods consist in introducing approximate solutions 
lying on the AIM. One looks for approximate solutions of the form um = 
Ym + Zmr, where ZM = (Dapp(Ym), or Zm is a finite-dimensional approximation 
of 4Dapp(Ym); here, Ym is given by the resolution of the approximate inertial 
form 

dt+ 
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Convergence results for such schemes have been obtained by Marion and Temam 
[41], Jolly et al. [33], and Devulder and Marion [8] for spectral bases. More 
general bases (finite elements, finite differences) are considered in Marion and 
Temam [42], Temam [52], and Chen and Temam [4] (in this regard, see also 
Foias and Titi [23]). 

The improvements of the nonlinear Galerkin method over the usual Galerkin 
method are evidenced by numerical computations that show improved stabil- 
ity and accuracy, and a significant gain in computing time; see Brown, Jolly, 
Kevrekidis, and Titi [3], Foias, Jolly, Kevrekidis, Sell, and Titi [12], Jauberteau, 
Rosier, and Temam [31], Jolly et al. [32, 33], Dubois, Jauberteau, and Temam 
[9], and Dubois, Jauberteau, Marion, and Temam [10]. Also an improved sta- 
bility condition for these schemes is obtained in Jauberteau et al. [31]. For 
other computational aspects of the nonlinear Galerkin method, see Graham, 
Steen, and Titi [25]. Also, see Foias, Jolly, Kevrekidis, and Titi [24], Shen [46], 
and Temam [52] for other stability issues. 

In this paper we are interested in deriving error estimates for the nonlinear 
Galerkin methods. We consider the 2-D Navier-Stokes equations. We start in 
?2 by recalling basic results on the functional setting of these equations. Section 
3 contains our main results. We consider an abstract AIM, X = graph 4Dapp of 
order e and the corresponding nonlinear Galerkin method. We obtain in ?3.1 
error bounds in various norms for this scheme in terms of e . In these estimates, 
the influence of the spatial discretization is clearly evidenced. In ?3.2 we remark 
that if one assumes, as in Heywood [28], and Heywood and Rannacher [29], that 
the exact solution is exponentially stable-which usually is difficult to check- 
then one can obtain error estimates that are uniform in time. We will report 
the details of this result in a subsequent work. In ?4, our results are applied to 
various AIM that have been constructed. Some corresponding technical proofs 
are given in the Appendix. Our results justify rigorously the improvements of 
the nonlinear Galerkin methods with respect to the Galerkin method. For the 
latter method, in the spectral case that we consider here, the error is of the 
order of (logA)m)/)Lm+1 (A,m = mth eigenvalue of the Stokes operator), while 
it is of the order of (logA")a/Aa1, a > 1, for nonlinear Galerkin methods. 
The value of a depends on the order of the AIM used in the corresponding 
approximate inertial form (1.2). 

2. THE 2-D NAVIER-STOKES EQUATIONS AND DYNAMICAL SYSTEMS 

We consider the 2-D Navier-Stokes equations in a bounded domain Q c R2 
with the appropriate boundary conditions, which we will discuss later: 

(2.1) 0a- vu + (u . V)u + Vp= 

V u = 0 , 

where the kinematic viscosity v > 0 and the body forces f are given. The 
unknowns are the velocity u and the pressure p. 

It is well known that the Navier-Stokes equations with the appropriate bound- 
ary conditions are equivalent to a functional differential equation 

du 
(2.2) -+vAu +Cu +B(u, u)=f 
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in a certain Hilbert space H, for instance see Lions [37], Temam [47, 48], and 
Constantin and Foias [5]. Equation (2.2) is similar to (1.1) with 

R(u) = Cu + B(u, u) -f. 

We denote by (,.) the inner product in H and by the corresponding 
norm. Here, A is the Stokes operator, which is a selfadjoint positive operator, 
with domain D(A) dense in H. Moreover, A-I is compact, and as a result the 
space H possesses an orthonormal basis wj of eigenfunctions of the operator 
A: Awj = Ajwj, j = 1 , 2, ... , where 0 < Al < A2 < ..< A, -+ o as n +oo. 
More precisely, there are positive constants cl, c2 such that 

(2.3) clk k < fork=1,2,... 

(see Metivier [43]). We denote V = D(A 1/2) and the corresponding norm in V 
by 11 - 11 = JAI/2 *1 . The linear operator C depends on the boundary conditions. 
If equations (2.1) are supplemented with periodic or homogeneous (nonslip) 
boundary conditions, then C _ 0. Otherwise, in the case of nonhomogeneous 
boundary conditions, the operator C satisfies 

(2.4) (vAu + Cu, u) > aslluj2 

for some a > 0, where a depends on v and the boundary condition (see Hopf 
[30], also see Lions [37]). Moreover, there exists a positive constant K such 
that 

(2.5) ICul < Kllull for all u E V. 

Hereafter, the constants cl , C2, C3, ... are positive constants which are dimen- 
sionless, while K will denote a generic constant which might depend on the 
physical parameters of the equation. The bilinear operator B(u, v) enjoys the 
following properties: 

(2.6) (B(u, v), w) =-(B(u, w), v) for all u, v, w E V, 

(2.7) |(B(u, v), w)I < c31ul'/211ujI'/211vjj IwII/211wllj/2 for all u, v, w E V, 

(2.8) I(B(u, v), w)I ? C411UjlooljVIj IWI 

for all u E D(A), v E V, and w E H, 

(2.9) I(B(u, v), w)I < C41UI IIvII 11wloo 
for all u E H, v E V, and w E D(A), 

where 11 I denotes the L??0(Q) norm. Applying the Brezis-Gallouet [2] in- 
equality, one finds that (2.8) and (2.9) become 

(2.10) (B(u, v), w)I < C511UI IIvII IwI (I + log AU1 1/2 

for all ueD(A), v E V, andw EH, 

(2. 1 ) l (B(u, v), w)J <C51U| ||V ||W (i + log 1011 1 / 

for all u E H, v E V, and w e D(A). 
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We will also need the following inequality borrowed from Titi [53, 54]: 

(2.12) V(B(u, v), Aw)I < c611UI llvlll Awl (1 +log 11 1 /) 

for all u E V, v E D(A), and w E D(A). 
We recall that for u0 given in H, the initial value problem (2.1), with the 

initial condition u(O) = u0, possesses a unique solution defined for all t > 0 
and such that 

u E F(R+; Hweak) n L2C(0, oo; V). 
If, moreover, u0 E V, then 

u E F(R+; V) n L 2oc(o, oo; D(A)). 
For further results concerning the existence, uniqueness, and regularity of solu- 
tion to the NSE, we refer to Constantin and Foias [5], Foias and Temam [22], 
Henshaw, Kreiss, and Reyna [26], Heywood [27], Ladyzhenskaya [36], Lions 
[37], Temam [47, 48], and references therein. 

Remark 2.1. Other dissipative equations can be treated as (2.2), for instance the 
2-D Benard convection problem, 2-D and 3-D convection in porous media (see 
Graham et al. [25]), 2-D Magneto-hydrodynamics equations, the Kuramoto- 
Sivaskinsky equation, etc. 

3. ERROR ANALYSIS FOR THE NONLINEAR GALERKIN METHODS 

In this section, we consider an AIM of order e > 0 and derive error estimates 
for the corresponding nonlinear Galerkin method. Section 3.1 deals with the 
approximation of a general solution of the Navier-Stokes equations, while in 
?3.2 we consider the case of a stable solution. Applications of our results to 
various specific AIMs can be found in ?4. 

3.1. The general case. As mentioned in the introduction, we introduce the 
orthogonal projection Pm on the space spanned by the first m eigenfunctions 
of the Stokes operator A, and let Qm = I - Pm. 

Let 4Dapp be a function from PmH ( Pm V) (or from PmBv(0, MI) , where 
BV(0, MI) denotes the ball in V centered at the origin and of radius MI) into 
Qm V which is supposed to be Lipschitz continuous, 

(3.1) II(Dapp(Pi) - DaPP(P2)II < 1liP -P211, 
for all PI, P2 in PmV (or in PmBv(0, Ml)) . 

We assume that X = graph(Dapp) is an AIM of order e > 0. More precisely, 
we suppose that, for any solution u(t) of (2.2) such that 

(3.2) lu(t) II < Ml for all t > 0O 
we have that 

(3.3) H1QmU(t) - (Dapp(Pmu(t))H < c for all t > 0. 
In the applications, BV(0, M1) is an absorbing ball for (2.2). Then, clearly, 
(3.3) implies that X# is an AIM of order e. Indeed, every solution enters, in 
finite time (for t > T* = T*(uo)) in the ball; then, for t > T. we have 

distv(u(t) , A) = inf lu(t) - vH< ? u(t) - (Pm u(t) + 4Dapp(PmU(t)))I 
vEV 

? HlQmu(t) - (DaPP(PmU(t))I ? C. 
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Consider the approximate inertial form based on Dapp, 

(3.4a) dyt + vAym + Pm C(ym + 4Dapp(Ym)) 
+ PmB(ym + 4Dapp(Ym) , Ym + (Dapp(Ym)) = Pm f 

or eventually the slightly different form 

(3.4b) dtm + vlAym + Pm C(Ym + 4Dapp(Ym)) 

+ PmB(ym + (Dapp(Ym) , Ym) + Pm B(ym , (Dapp(Ym)) = Pmf. 

The following theorem gives an error estimate in the norm of H for the 
nonlinear Galerkin method. 

Theorem 3.1. Under assumptions (3.1)-(3.3), let u(t) be a solution of (2.2), 
(2.13) such that 

(3.5) 11u(t)II < Ml for all t > 0. 

Suppose that ym (t) is a solution of (3.4a) (respectively of (3.4b)) which satisfies 
Ym (O) = Pm uo and 

(3.6) Ilym(t)II < Ml for all t > 0. 

Then 

IU(t) - (Ym (t) + (Dapp(ym (t))) 12 

(3.7) ? [(1 +212) efsAm(T)dTB2(s)ds+ 2a] 12Lm 0 ~~~~~Lm jim+j 

where Lm, Am, and Bm are given by (3.10), (3.12), and (3.13), respectively. 

Remark 3.2. The condition (3.5) means that we approximate solutions lying 
inside the absorbing ball Bv(O, MI). Since all solutions enter in finite time 
in this ball, and we are interested in long-time integration, this is not a serious 
restriction. Besides, the general case (any uo sufficiently regular) can be handled 
in the same manner if one allows the constants 1, Ml , and e in (3.1), (3.2), 
(3.3) to depend on uo; one can then show that the estimate (3.7) holds. 

Proof of Theorem 3.1. We denote p = Pm u, q = Qmu, y = Ymi v = y + 
(Dapp(Y) , J = p-y, A1 = q- Dapp(P) A A2 = Dapp(P)-Dapp(Y) , and A = A1 +A2- 

We will only consider (3.4a); the same treatment works for (3.4b). 
From (2.2) and (3.4a) we have 

dJ 
(3.8) dt + vAJ + PmC + Pm(B(u, u)-B(v, v)) = 0. 

By taking the inner product of (3.8) with 3 and using (2.4) and (2.6), we 
conclude that 

1 dI312 1j 1 + dt +IaH32 < (B(3, u), 3)j + I(B(A, u), 3)j + I(B(v, A), 3)1. 

This inequality together with (2.7) and (2.6) yield 

1 dIr512 1 I2 
2 dt- + aH2 < C31I 1J1 Ilull + I(B(A1, u), 3)j + (B(A2, U) 

+ I(B(y, 3), A1)l + I(B(y, 3), A2)1 + J(B(4Dapp(y), 3), A)I. 
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Then, using (2.7), (2.9), and (2.10), we get 

1 dt 12 
1 dldl2 + aH3Hll2 ? c3ldl C315 IV21uH + c5lIA I 2II u1 21112 

(3.9) + C5Ilyll 1111 IAI lL1/2 

+ C3ly1121lyllV1/211Hll 1A21"1/2 11A2 "12 

+ C3I|DaPp(Y) I I/2 |IDapp(Y) I 1/211H 1 Il 1A/2 lAll 1/2 

where 

(3.10) Lm = (I +log ,) 
m 

Because of (3.1) and (3.3), inequality (3.9) gives 
1 d16512 aHH 1H +C58 +61 
2 d tl + all?l12 < C31(511311 IHU +I /2 hllullH l LI2 +C31IIII IuII Ik5 

+ 1/2 IIYII HL,/2 + 1/2 
m+l 

+ 
mlI/211DaPp(Y)ll 

11511 + C3_1 Hl1app&)HlH2- 
m+1 + 

By Young's inequality, 
1 dtJ +2 aII 3c 

2 3 27C414 
d a 131 II2 < _3_31_ 2 + c21211UI1+27c 4 lyl2llyll2) 312 

(3. 1 1 2) + 
a 

2 + 
a 

4a L 3 3c3 2 llap()2 +c 23 2|a Y 

Denote 

(3.12) Am(t) = lull 1 lull 2 Li Lv2 Li + 6c- 5 
_IIyp(Y) lm2 

and 

a 4u IIA'I ImAm (3.13)~~~~~~~~~~33 3c 3c ppl +y 11s 21(512L l4ap()l 

Then, by G8ronwall's Lemma, and since 3(0) = 0, (3.1 1) gives 

(~~~~~~~~~~~~ 3. - 4) I (Dp (y t) 2 + m~ I I (5A l)d 

m()Das 

aAm+ I a 
6C2 C2Lm 27Ct46c21 

(3.14) A t)3I3(t)12 - ' Im+12 Bm(S)dS.l + 3- (ap y 1 

This inequality together with (3.14), (3.1), and (3.3) yield (3.7). O 
Remark 3.3. The time-dependent term in the right-hand side of (3.7) can be 
evaluated easily from the a priori estimates for (2.2) and (3.4). Moreover, 
notice that these estimates will not involve the term 3UPt>O D u(t) 12 but its time 
average, which is much smaller. Also, notice that this estimate (3.7) does not 
involve at all the term 3Au(t) I. We will refer to this observation later in Remark 
4.1, when we will compare our estimates with those of Rautmann [44, 45]. 

In the next theorem we give an upper bound for the Dirichlet norm of the 
error. 
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Theorem 3.3. Assume that u(t) and y(t) are as in Theorem 3.1. Then 

(3.1 5) jju(t) - (y(t) + app(Y(t)))II2 < ((1 + 21)j efs At.(r)dx ( )d 2) 2 

where Am and Bm are given in (3.17) and (3.18), respectively. 
Proof. We will use the same notation as in Theorem 3.1. We take the inner 
product of (3.5) with A3 and obtain 

2 dIIt12 + vIA3I2 < I(C3, A3)I + I(B(3, u), A3)I + I(B(A, u), A3)I 
+ l(B(v, A), A3)I + l(B(v, 3), A3)I. 

From (2.5), (2.12), and (2.7) we have 

I dI JI12+ vIA3I2 < KII3II IA31 + C611311 h ull I + log 1 2 ) JA31 2 dt II UII'i /A 

+ c3IAI"/211A11 1"211 Iu1 AJ I 1/21A3/23 I 1/2 

+ I(B(y, A), A3)I + l(B(Dapp(Y), A), A3)I 

+ I(B(y, 3), A3)I + l(B(Oapp(y), 3), A3l. 

Applying (2.10) and (2.7), we obtain 

1 d113 11I I 
JAJ 12 <KIIJ11 JAJI +C61Ib51 IJUJI I +log 

Au 12 )"2 A3 
2 dt +vAl ~~13 611 ul( Iul~ 

+ C3I jj/jlull A3AJ + C5jjYII (1 +log IAy 12 /2 

x (11311 + IIAII)1AJI 

+ C3 I4app(y) I1 1 2IDapp(y) Il 1/2(1111 + 11AII)1A31/2 "A3/23511/2. 

From (3.1) and (3.3) we have 

I dIIt + VlAjl2 < KII3II IA3I + c61I311 lull I + log 11u12 
12 

(Ayl2 \1/2 
+C511y11 '+log i[(1, + 1)I311 + cIJA3I 

+ C3(C + 1) 13)llull A3I + C3[(1 + 1)11311 + 9Ill4app(Y)II A31. 

By Young's inequality we get 

(3.16) ~d113112 2 12< (3.16) t + d + vIA3I ?Am (t) 113112 + Bm (t)e2, 

where 

6K2 61IuI2 (1+o Aul2~ 6212 
Am (t) = _ + 6 | ( + lg IIuII2i ) + 3 11u122 

+ 6c2(1+ 1)2 2( +log Ayl2 ) + +1)2 
'I llyll2).i -IIDapp Y 
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and 

(3.18) = 6c~~~ 2~~ 6c / IAyI12 '\ 6c2 
(3.18) hBm(t) =V3u h|U|2 +-ICII2 (1 +log Xy2 + 63 IDapp(y) 2. 

By Gronwall's Lemma, (3.16) implies 

(3.19) ||,i(t)11|2 < ( ;eJ Em d, Bm (s) ds) e2. 

Therefore, (3.15) follows from (3.19), (3.1), and (3.3). El 

Remark 3.4. Here again, we remark that the error estimate in (3.15) involves 
only the logarithm of the IAul norm of the solution, not IAul . 

3.1. Stability and uniform error bounds in time. It is observed that the error 
bounds in (3.7) and (3.15) are growing exponentially in time. Since certain 
solutions of turbulent flows for high Reynolds numbers are unstable, one should 
expect such growth in the bounds. Indeed, if, for instance, u(t) _ u, is an 
unstable hyperbolic steady state, then it is natural to observe, at least for a short 
time, exponential growth of certain small perturbations about u,. If, on the 
other hand, one assumes that the exact solution u(t) is exponentially stable, as 
in Heywood [28] and Heywood and Rannacher [29], then one can get a time- 
independent upper bound for the error in (3.7) and (3.15), without changing 
the accuracy in the space discretization. We will report the details of this result 
elsewhere. 

4. APPLICATIONS 

4. 1. The Galerkin method. In the classical Galerkin method, the equations are 
projected on the linear space X0O = PmH. This linear manifold can be viewed 
as the simplest AIM. 

More precisely, let us consider equation (2.2) with C _ 0, and let u0 be an 
initial value such that I Iu < Ro , I0,u < RI . There exists a time To, which 
depends on Ro, RI, and the data (v, IfI, Al)), such that 

(4.1) lu(t)l < Mo, IIu(t)II < Ml for all t > To, 

where Mo, Ml are independent of u0 but depend on (v, Ifl, Al) (see for 
instance Constantin and Foias [5] and Temam [47]). Alternatively, (4.1) means 
that the ball BH(O, Mo) (respectively Bv(0, Ml)) is an absorbing set in H 
(respectively in V). 

According to Foias et al. [13, 14], the time To can be chosen so that qm = 

Qmu(t) satisfies 

(4.2) JJqm(t)JJ < KL /2A- /l2 for all t > To. 

Here, K depends only on the data (v, If l, A1), and Lm is given by (3.10). 
Since Iqm(t)II = distv(u(t) , Pm H), (4.2) yields that o0 = PmH is an AIM of 
order e = KLM2M+"2. Obviously, for X0, one has (Dapp 0. 

The approximate inertial form associated with X0 is the standard Galerkin 
procedure for (2.1): 

(4.3) dt + vAym + PmR(ym) = 0. 
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The a priori estimates for (4.3) are well known. In particular, the following 
uniform-in-time bound can be derived: 

Ilym(t)I 1< Ml for all t > T0, 

where To is as above. 
This shows (3.3). Theorems 3.1 and 3.3 apply and provide the estimates 

IU(t) Ym(t)12 < j tfs Im(r)d'Bm + Lm) A2Im m 'm+1 

~~~~ Lm 

where Lm, Am, Bmi, Am, and Bm are given by (3.10), (3.12), (3.13), (3.17), 
and (3.18), respectively. 

Remark 4.1. The above estimates are consistent with the convergence result of 
Foias [11]. In comparison with the error bounds of Rautmann [44, 45], we im- 
prove in the time-dependent term. This is achieved, as we observed in Remarks 
3.3 and 3.4, by not involving IAu(t) or its time average, unlike Rautmann [44, 
45]. Because, even in the case of homogeneous boundary conditions, the bounds 
available for IAu(t)I depend exponentially on a power of the Reynolds number 
(see, for instance, Constantin and Foias [5] and Foias and Temam [20]). On 
the other hand, in establishing this improvement we pick up the extra Lm-term 
in the spatial error, which is only logarithmic in Ami. Moreover, in view of the 
example of Titi [55, 56], and provided f E L2, the above estimates are sharp, 
asymptotically in m, as m -* oo, up to a logarithmic term. This observation 
makes the nonlinear Galerkin methods, below, more accurate than the usual 
Galerkin method. It is worth mentioning, however, that if the forcing term 
in (2.1) with homogeneous or periodic boundary conditions, is more regular, 
then one can improve the estimate (4.2) and consequently the above estimates 
(see Jones and Titi [34]). A similar observation is valid for nonlinear Galerkin 
methods. 

4.2. Nonlinear Galerkin methods. The above AIM, X,4 is a linear space. 
The simplest nonlinear AIM, X = graph Di, is given by the resolution of the 
Stokes problem (with homogeneous or periodic boundary conditions) 

vAq + QmR(p) = O, i.e., 1D(p) =-(vA)-'QmR(p). 

According to Foias et al. [13, 14], the following estimate holds: 

IIQmu(t) -(DI (Pmu(t))II < KLmA-1 for all t > To, 

where To is as above. This shows that Xlj is an AIM of order c = KLmA)L 1. 
In particular, Xl is of better order than X04. 

The nonlinear Galerkin method (3.4b) associated with X,l is introduced in 
Marion and Temam [41], while (3.4a) is studied in Devulder and Marion [8]. 
In both cases, the existence of a constant M depending only on (v, Ifl, i,) 
such that 

IlYm(t)II < M for all t > To 
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is derived (in the case of (3.4b) the above holds provided m is large enough, 
depending on uo). This guarantees (3.3) and, together with other a priori 
estimates, yield the following convergence results: 

(4.4) Ymr+ (I (Ym) -* u as m - oo in L2(0, T; D(A)) and LP(O, T; V) 
strongly for all T > O and all 1 < p < +oo, 

and 

(4.5) ym + (I(ym) -* u as m -* oo in L?(R+; V) weak-star. 

Here, the initial data uo is assumed to be given in V (see Marion and Temam 
[41] and Devulder and Marion [8]). 

The Lipschitz property (3.1) for (I with / = K)7"/4 is proved in the Ap- m+1 
pendix. 

Theorems 3.1 and 3.3 apply here and give the following error bounds for the 
nonlinear Galerkin approximation induced by (DI 

IU(t) - (Ym(t) + (ITi (ym (t))) 12 
(4.6) < [(1 K ftetAmTdTB (s)d+2 1 KL3 [\\ 1/2J I Bm( ,s LJs m+1 

Am 1 1esLm) m+1 IIu(t)-(Ym(t) + (DI1 (ym (t))) 112 

(4.7) < I( + K e Eo eA(T) dTgM (s) ds + 2] KLM 

with Lm, Am, Bm, Am, and Bm respectively given by (3.10), (3.12), (3.13), 
(3.17), and (3.18). It follows from (4.6), (4.7) that the order of the spatial 
discretization is improved by comparison with the Galerkin method (see ?4.1 
above). 

Another simple AIM was introduced by Foias et al. [ 18], known as the Euler- 
Galerkin AIM, and which was used in real computations by Foias et al. [ 12] and 
Jolly et al. [32, 33]. Nonlinear Galerkin methods of the type (3.4), induced by 
the Euler-Galerkin AIM, were applied to the Kuramoto-Sivashinsky equation 
and studied analytically as well as computationally in Jolly et al. [32]. More 
involved AIM have been introduced in Foias and Temam [21], Temam [50]. In 
particular, in Temam [50] (see also Debussche and Marion [7]), a method for 
constructing a sequence of manifolds A4j = graph Dj, which is providing better 
and better orders of approximation as j increases, is presented. At step j, 4 
is such that 

(4.8) IIQmu(t) - (Dj (Pmu(t))II < KjLjl2+1"2)-jl2-112 for all t > To, 
j i m+1 

where Kj depends on j and on the data (v, If l, Al). The precise definition 
of the ID 's is recalled in the Appendix, where the property (3. 1) is proved with 
I = ly = KjI'1/)4, where Kj' depends on j and the data (v , If I, AI). It is clear Im+1 

from (4.8) that as j increases, A4j provides a better-order approximation to 
the solution: for some fixed m, the solutions may not be closer to -i, for 
j' > j, than to 4ej, but this holds for m large enough. 
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The associated nonlinear Galerkin method (3.4a), is considered in Devulder 
and Marion [8], where the estimate (3.3) is proved and convergence results 
similar to (4.4), (4.5) are derived. 

Therefore, one can apply Theorems 3.1 and 3.3 and obtain the following 
error bounds: 

Iu(t) - (Ym(t) + (Dj (Ym(t)))12 

?[(1 +l/2 ) J2efstAmr)dTBm(s)ds+ LJ] K]L'+2 

II U(t) -(Ym (t) + ?I?j (Ym (t))) 112 

[(Kf t[Aft (T) dT~ J IKL+ 

? I + -14J es Bm(s) ds + 2]i 

where Lm, Am, Bi, Am, and BL are given by (3.10), (3.12), (3.13), (3.17), 
and (3.18), respectively. Clearly, for increasing j, the order with respect to m 
of these estimates improves. 

4.3. Other nonlinear Galerkin methods. The above methods correspond to 
manifolds whose equations are explicit with respect to the unknowns. Here we 
present numerical schemes associated with implicit AIMs. 

The first manifold that we consider is the analytic manifold , which 
contains all the stationary solutions of (2.2). Denote Bm = PmBv(0, Ml), 
where Ml satisfies (4.1). According to Foias and Temam [19], Foias and Saut 
[16], and Titi [55, 56], for m large enough, there exists a mapping OI5: Gm 

Qm V which satisfies 

(. (p) = (vA) - (Qj QyC(p + (p)) 
- Q2B(P + (P) ,P + I 

for all p e m 
The manifold J1' = graph 'D has been studied from the point of view of 

AIMs in Titi [55, 56], where it is shown to be of the order of e = in m+1 

Moreover, Jolly et al. [32, 33] used this manifold to demonstrate the compu- 
tational efficiency of the nonlinear Galerkin method (see also Graham et al. 
[25]). 

In Titi [55, 56] it is shown that io is a Lipschitz manifold. Using the 
usual energy estimates, one can easily show that (3.4a) has a global solution 
for initial data in t Such analysis has been carried out in Jolly et al. [33] 
for the Kuramoto-Sivashinsky equation. In the case of (3.4b), using techniques 
similar to the ones in Devulder and Marion [8], one can show the existence of 
a constant Mo depending only on (v, IfI l, A) and an integer mh depending 
on (v, IfI l,h) and u0 (through IIuoife) such that, if m > m, problem (3.4) 
together with Ym(O) = PvUo possesses a unique solution yp(t) defined for all 
t > 0 with 

(4.10) IIyp(t)II ? Mo forall t > 0. 

This guarantees (3.2) (with Ml replaced by Mo). The estimate (4.10) enables 
us to derive convergence results analogous to (4.4) and (4.5). 
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Finally, it is easy to derive the Lipschitz property (3.1) for (s with / = 

KL 1/2 A 1/2 
m m+l 

Theorems 3.1 and 3.3 apply and yield the following error bounds for the 
nonlinear Galerkin scheme: 

IU(t) - (ym(t) + Ds(ym(t))I2 

< [(l+ eLm) ft es Am(T)dTBm(S)dS + 2 m 
AM+,1 Lm Am+ 

IIU(t) -(ym(t) + (Ds(Ym(t)))II2 

< [(1 + L e) jtefs tn(T)dT%m(s) ds + 2] Kr 

A more involved implicit AIM is given by the resolution of the system 

+ vAp + PmC(p + q) +PmB(p + q, p +q) = Pmf, 
(4.11) vAql + QmCP' + Qm(B(p', p + q) + B(p + q, p)) = 0, 

q, + vAq + QmC(p + q) + QmB(p + q, p + q) = Qmf. 

According to Devulder and Marion [8], for every p E ,Wm and m large enough, 
(4.11) possesses a unique solution (pI, q1I, q) with pO E Pm V, q E Qm V, 
and q E QmBv(O, MI). We set q = ??(p). Then, X#= graphD is an AIM of 
order e = KLmA l-. The corresponding nonlinear Galerkin method (3.4) is 
studied in Devulder and Marion [8], where property (3.6) is checked as well as 
convergence results analogous to (4.4), (4.5). 

Lastly, property (3.1) holds with / = KA114. Therefore, by applying The- m+1 
orems 3.1 and 3.3, we obtain the following error bounds for the nonlinear 
Galerkin methods: 

u(t) - (Ym (t) + zI)(ym (t)) 12 

<[( + /) jefst Am(T)dTBm(s) ds + Lm] ;m 

IIu(t) -(ym(t) + zI)(Ym(t))II2 

< [( + K > ) jefst (T) dTM (s) ds + ] KL2 
L AM+ J ~~~~~~~~~M+ 1 

4.4. Remarks on the discretization of the manifolds. The methods (3.4a) or 
(3.4b) involve the equation z = Dapp(Y) of the manifold. Generally speaking, in 
order to compute 'Dapp , we need to compute infinitely many Fourier coefficients. 
This prevents us from directly using the schemes in real computations. Here 
we make some remarks on the discretization of the equation of the manifold. 

First we note that from a practical point of view one can mainly use the 
schemes in the case of periodic boundary conditions where the eigenfunctions 
of the Stokes operator are known. They correspond to the usual Fourier modes. 
Then it is easy to check that if p E Pm V, one has B(p, p) E Pa(m) V, for some 
c(m) < oo. Consequently, all equations for implicit AIMs in ?4.2 turn out 
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to be discrete equations. For example, the equation for A9) is an equation in 
Pa(m) V. Therefore, one can replace without any change in (3.4a), (3.4b), (Dapp 

by (Pa(m) - Pm)Dapp, where the function av(m) depends on the AIM under 
consideration. In particular, the error estimates are the same as above. 

For implicit manifolds the situation is less straightforward. However, these 
manifolds are constructed using the contraction principle. Therefore, they can 
be approximated by simple explicit functions, thanks to the successive approx- 
imations procedure and, as above, the approximating equations turn out to be 
discrete equations. Estimates of the error in such approximations can be found 
in Titi [55, 56]. 

In the case of general boundary conditions (which is not realistic from a 
practical computational point of view, as already noted), the equations of the 
manifolds can still be discretized by using N modes, but N must be large 
enough so that the error due to this discretization is of the same order as the 
error of the nonlinear Galerkin method. For example, for the manifold V in 
(4.9), it is shown in Titi [56] that N must be of the order m3. 

APPENDIX. PROOF OF THE LIPSCHITZ PROPERTY FOR THE MANIFOLD -e 

Our aim in this appendix is to prove the Lipschitz condition (3.1) for the 
nonlinear Galerkin methods presented in Devulder and Marion [8]. For the 
sake of simplicity we consider the case C _ 0. 

These methods are associated with the approximate inertial manifolds Ij 
constructed in Temam [50], a construction which we will now recall. The mani- 
folds are defined recursively; they are obtained as graphs of functions ID map- 
ping Pm V into Qm V. 

The first manifold, q1 = (D (p), satisfies (see ?4.2) 

(A.1) vAq1 + QmB(p) = Qmf, where B(p) = B(p, p). 

Then, q2 = ?)2(P) is the solution of 

(A.2) vAq2 + QmB(p + ql) = Qmf, 

where q1 is given by (A. 1). Generally, at step j, for j > 3, qj = (D)j(p) is 
given by 

(A.3) qJ2 + vAqj + QmB(p + qj-i) = Qmf. 

Here, the qj are approximations of dt, where q = Qmu. To define them, we 
must introduce two families qji, pj, where the qji approximate in some sense 

d, while the p. approximate dP , with p = Pmu. At the step j, i.e., when 
we want to determine qj from (A.3) (j > 3), we construct the sequence 

(A.4) Pii-1-2i , i = O, ... , [(j -1)/2], 

for increasing values of i, and then the sequence 

(A.5) qj-2i i = [( + 1)/2], ... , 1, 0, 

in decreasing order of i. Of course, at that stage, the similar sequences with 
j replaced by k < j - 1 are already defined. For i = 0, we have po =P 
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q q. for all j . And we also set for convenience q(_1) = qk O0 for all k. 
The sequence (A.4) is determined by the following recursive formula: 

S (i ~ PmB(pk + k i-k -k 

k -2/k PJ-1+2i-2k + j1+2i-2k) 
(A.6);, i k=O 

k= ( Pmf for i =0, 

+ P5-3-2i + ?VApj i-2ij{ for i=>l 

which gives explicitly p'j+ 2i for i = 0, .. , [(j - 1)/2] - 1 . Then the sequence 
(A.5) is defined by 

qj-2i = 0 for i= [(j + 1)/2], 

S (k) QmB(p 1 _2k + qJ-I-2k, PJ-I+2i-2k + -1+2i-2k) 
(A.f7)f, i k=O 

+q_22i +Aq1 2i ={0 for i > 1. 

The order of the manifold qj = 4Dj(p) is given by the estimate (4.8) proved 
in Devulder and Marion [8]. 

Here, we seek to prove the Lipschitz property (3.1) for the .4j's. We first 
need the following lemma, which gives in particular estimates on the nonlinear 
operator Dj valid in the absorbing ball Bv(0, M1) for (2.2). 

Lemma A.1. Let j > 1 and let P E PmBv(O, M1). Then, for 1 < k < j, the 
families (A.4) and (A.5) satisfy thefollowing estimates: 

(i) For i = 1, ..., [(k - 1)/2], the term Pk--12i given by (A.6)k,i satisfies 

(A. 8) k, i lPik- I-2i I I KkiM +1I- / 

where Kk, i > 0 denotes a constant depending on the data (v , If I, AI) and on 
k, i, while ak,i > 0 depends only on k, i. 

(ii) For i = [(k + 1)/2], ..., 0, thefunction qk_2i given by (A.7)k,i satisfies 

(A. 9)k, i |Ak-2i I < Kk, iMl m+ 

where Kk,i > 0 denotes a constant depending on the data, k and i, while 

Ak, i > depends only on k, i. 
Proof. This lemma is a variant of Lemma 3.1 in Devulder and Marion [8], and 
its proof will be omitted. 0 

We will now show that 1Dj is Lipschitz continuous. More precisely, we seek 
to show that the following estimates hold. 

Lemma A.2. Let j > 1 and let p, p3 E PmBv(O, MI). Then, for 1 < k < j, 
thefamilies (A.4) and (A.5), definedfor p and p5, are such that 

(i) for i= 1,..., [(k- 1)/2], 

(A. O)k, i IPk--2i PkL-I2iI ? Kk iM)kI)L/2 IIP-111; 

(ii) for i = [(k + 1)/2], ..., 0, 

(A.1 l)k,i A 2(qi2k-dc!<)j ? Kk,i k1 im+l IIP Pl| 
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where Kk, , Kk i, denote constants depending on the data, k and i, while 

Yk,i, 5k,i depend only on k and i. 

Remark A. 3. The inequality (A. 11)j,0 together with the spectral inequality 
(A.16) give 

(A. 12) lli(Djp) - (Dj(fP)ll < ljllp -fill for all P, Pi E PnBv(O, MI ), 

where 

(A. 1 3) j = m+1 

which is the desired Lipschitz property. 

Proof of Lemma A.2. In the sequel, we will need the following properties of the 
nonlinear operator B (see Constantin and Foias [5], Temam [47]): 

(A.14) IB(u, v)l < c7IuI"/211u11"/211v11"/2lAvI"/2 for all u E V and v E D(A), 

(A. 15) IB(u, v)l < c8IuI"/2lAul"/21v 11 for all u E D(A) and v E V, 

and the spectral estimates 

A) 1/2IApl < llPll < Al/21pl for all p E PmH, 

(A. 16) Ai1"/2lAul > llull > AM/2iui for all u E D(A), 

)ML7/'IAqI ? IIqII ? i1Ilql for all q E QmH. 

Let j > 1 be fixed and let p, p3 E PmBv(O, MI). The proof of estimates 
(A. lO)k, i, (A. 1l)k, i will rely on an induction argument on k, 1 < k < j . 

(a) Initialization of the induction (k = 1). For k = 1, there is nothing to 
prove as far as (A. 10) is concerned. Next, (A. 1 1) reduces to an estimate for 

(q? - q?). But we have 

vA(q?-q?0) = Qm(B(p, p)-B(p, p)), 

and therefore 

v IA(qo - 40)l < IB(p -13, p) I + IB(Cr, P -3) 1. 

Hence, using (A.15) and (A.16), we get 

l _ 40) 2 < C8 A14 ' 
JA(q, 

- 
M IP,il 

so that (A.11)1,0 holds. 
(b) The induction argument. We now assume that estimates (A. lO)k, i and 

(A. I)k i have been proved up to level k - 1, and we seek to prove them at 
level k. 

Following the determination of the families (A.4) and (A.5), we will first 
prove (A. lO)k i for increasing values of i, and then for (A.ll)k ,i by induction 
on i for decreasing values of i. 

(b.1) Proof of (A.lO)k,i. For i = 1, (A.lO)k, i is an estimate for 

(Pk-3 -Pk3). But we have 
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Hence, 

IPk-3 k31 < vIA(fi -p) I+ IB(fi -P + I -qk-1 P+ qk-1)I 

+ JB(p + qk?-1, P- + qk?_1 - 4?_1)1- 

Using Lemma A. 1 and the same techniques as in Devulder and Marion [8], one 
can then prove (A. IO)k 1 . The details are left to the reader. 

Next, assuming that estimate (A.lO)k,i has been proved up to level i 
(i > 1), we want to prove it at level i + 1 . But we have 

i+1 -i1 vA(i31 pk-32i- k-3-2i = A(k- 1-2i-k12) 

+ E z )Qm B ((k-I2 - k-2/qk-1-21, fii-I-i2 + 
qk-l-2i2 Z , (/}) QmB (3k-1-21 + qk-1-21 k qk-1-2i1 +k--2i+21 + 

+~ 0) QmB(k4 1-21 +qk-~1-21' 35ki1-2i?21 + -12+1 

where 61l = ('3l - pl ) and Al = (ql - ql ). All the terms in the right-hand 
side can be estimated as in Devulder and Marion [8], by using Lemma A.1, 
(A.IO)k,l for 1 < I < i, and (A.1 1)k- 1,l for 0 < I < i. 

(b.2) Proof of (A.11)k,i. For i = [(k + 1)/2], the inequality (A.ll)k i is 
obvious, since qk2i = dk-2i = 0. Assuming now that (A. ll)k,i has been 
proved for j= [(k+ 1)/2], ... , i+ 1, we can prove it at level i as in (b.l). I 
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